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1. Machine Learning and Data Mining

Machine learning and data mining are research areas of computer science
whose quick development is due to the advances in data analysis research,
growth in the database industry and the resulting market needs for methods
that are capable of extracting valuable knowledge from large data stores. This
chapter gives an informal introduction to machine learning and data mining,
and describes selected machine learning and data mining methods illustrated
by examples. After a brief general introduction, Section 1.2 briefly sketches
the historical background of the research area, followed by an outline of the
knowledge discovery process and the emerging standards in Section 1.3. Sec-
tion 1.4 establishes the basic terminology and provides a categorization of
different learning tasks. Predictive and descriptive data mining techniques
are illustrated by means of simplified examples of data mining tasks in Sec-
tions 1.5 and 1.6, respectively. In Section 1.7, we highlight the importance of
relational data mining techniques. The chapter concludes with some specu-
lations about future developments in data mining.

1.1 Introduction

Machine learning (Mitchell, 1997) is a mature and well-recognized research
area of computer science, mainly concerned with the discovery of models,
patterns, and other regularities in data. Machine learning approaches can be
roughly categorized into two different groups:

Symbolic approaches. Inductive learning of symbolic descriptions, such
as rules (Michalski et al., 1986b; Clark & Niblett, 1989), decision trees
(Quinlan, 1986) or logical representations (Muggleton, 1992; Lavra¢ &
Dzeroski, 1994a; De Raedt, 2008). Textbooks that focus on this line of
research include (Mitchell, 1997; Langley, 1996; Witten & Frank, 2005).

Statistical approaches. Statistical or pattern-recognition methods, includ-
ing k-nearest neighbor or instance-based learning (Dasarathy, 1991; Aha
et al., 1991), Bayesian classifiers (Pearl, 1988), neural network learning
(Rumelhart & McClelland, 1986), and support vector machines (Vapnik,
1995; Scholkopf & Smola, 2001). Textbooks in this area include (Bishop,
1995; Ripley, 1996; Duda et al., 2000; Hastie et al., 2001).

Although the approaches taken in these fields are often quite different,
their effectiveness in learning is often comparable (Michie et al., 1994b). Also,
there are many approaches that cross the boundaries between the two ap-
proaches. For example, there are decision tree (Breiman et al., 1984) and rule

 This chapter is partly based on (Lavra¢ & Grobelnik, 2003).
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learning (Friedman & Fisher, 1999) algorithms that are firmly based in statis-
tics. Similarly, ensemble techniques such as boosting (Freund & Schapire,
1997), bagging (Breiman, 1996) or random forests (Breiman, 2001la) may
combine the predictions of multiple logical models on a sound statistical ba-
sis (Schapire et al., 1998; Mease & Wyner, 2008; Bennett et al., 2008). This
book is concerned only with the first group of methods, which result in sym-
bolic, human-understandable patterns and models.

Due to the growth in the database industry and the resulting market needs
for methods that are capable of extracting valuable knowledge from large
data stores, data mining (DM) and knowledge discovery in databases (KDD)
(Piatetsky-Shapiro & Frawley, 1991; Fayyad et al., 1995; Han & Kamber,
2001) have recently emerged as a new scientific and engineering discipline,
with separate workshops, conferences and journals. According to Witten &
Frank (2005), data mining means “solving problems by analyzing data that
already exists in databases”. In addition to the mining of structured data
stored in data warehouses—e.g., in the form of relational data tables—there
has recently also been increased interest in the mining of unstructured data
such as text and web.

Research areas related to machine learning and data mining include
database technology and data warehouses, pattern recognition and soft com-
puting, text and web mining, visualization, and statistics.

— Database technology and data warehouses are concerned with the efficient
storage, access and manipulation of data.

— Pattern recognition and soft computing typically provide techniques for
classifying data items.

— Text and web mining are used for web page analysis, text categorization,
as well as filtering and structuring of text documents; natural language
processing can provide useful tools for improving the quality of text mining
results.

— Visualization concerns the visualization of data as well as the visualization
of data mining results.

— Statistics is a classical data analysis discipline, mainly concerned with the
analysis of large collections of numerical data.

As statistics already provides numerous data analysis tools (Friedman,
1998; Breiman, 2001b), a relevant question is whether machine learning and
data mining are needed at all. There are several possible answers. First, as
industry needs solutions for real-life problems, one of the most important
issues is the problem solving speed: many data mining methods are able to
deal with very large datasets in a very efficient way, while the algorithmic
complexity of statistical methods may turn out to be prohibitive for their use
on very large databases. Next, the results of the analysis need to be repre-
sented in an appropriate, usually human understandable way; apart from the
analytical languages used in statistics, data mining methods also use other
forms of formalisms, the most popular being decision trees and rule sets. The
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next important issue in a real-life setting concerns the assumptions about the
data. In general one may claim that data mining deals with all sorts of struc-
tured tabular data (e.g., non-numeric, highly unbalanced, unclean data) as
well as with non-structured data (e.g., text documents, images, multimedia),
and does not make assumptions about the distribution of the data. Finally,
while one of the main goals of statistics is hypothesis testing, one of the main
goals of data mining is the construction of hypotheses.

1.2 Historical background

Machine learning is a well-established research area of computer science.
Early machine learning algorithms were perceptrons (later called neural net-
works, (Rumelhart & McClelland, 1986)), decision tree learners like ID3
(Quinlan, 1979, 1986) and CART (Breiman et al., 1984), and rule learners
like AQ (Michalski, 1969; Michalski et al., 1986b) and INDUCE (Michalski,
1980). These early algorithms were typically used to induce classifiers from
a relatively small set of training examples (up to a thousand) described by
a small set of attributes (up to a hundred). An overview of early work in
machine learning can be found in (Michalski et al., 1983, 1986a).

Data mining and knowledge discovery in databases appeared as a recog-
nizable research discipline in the early 1990s (Piatetsky-Shapiro & Frawley,
1991), with the advent of a series of data mining workshops. The birth of this
area was triggered by a need in the database industry to deliver solutions en-
hancing the traditional database management systems and technologies. At
that time, these systems were able to solve the basic data management issues
like how to deal with the data in transactional processing systems. In on-
line transactional processing (OLTP) most of the processing scenarios were
predefined. The main emphasis was on the stability and safety of solutions.

As the business emphasis changed from automation to decision support,
limitations of OLTP systems in business support led to the development of the
next-generation data management technology known as data warehousing.
The motivation for data warehousing was to provide tools for supporting
analytical operations for decision support that were not easily provided by
the existing database query languages. Online analytical processing (OLAP)
was introduced to enable inexpensive data access and insights which did
not need to be defined in advance. However, the typical operations on data
warehouses were similar to the ones from the traditional OLTP databases
in that the user issued a query and received a data table as a result. The
major difference between OLTP and OLAP is the average number of records
accessed per typical operation. While a typical operation in OLTP affects
only up to tens or hundreds of records in predefined scenarios, a typical
operation in OLAP affects up to millions of records (sometimes all records)
in the database in a non-predefined way.



The role of data mining in the above framework can be explained as fol-
lows. While typical questions in OLTP and OLAP are of the form: ‘What is
the answer to the given query?’, data mining—in a somewhat simplified and
provocative formulation—addresses the question ‘What is the right question
to ask about this data?’. The following explanation can be given. Data ware-
housing/OLAP provides analytical tools enabling only user-guided analysis
of the data, where the user needs to have enough advance knowledge about
the data to be able to raise the right questions in order to get the appropriate
answers. The problem arises in situations when the data is too complex to
be appropriately understood and analyzed by a human. In such cases data
mining can be used, providing completely different types of operations for
handling the data, aimed at hypothesis construction, and providing answers
to questions which—in most cases—cannot be formulated precisely.

1.3 Knowledge discovery process and standardization

Data mining is the core stage of the knowledge discovery process that is aimed
at the extraction of interesting—mnontrivial, implicit, previously unknown
and potentially useful—information from data in large databases (Fayyad
et al., 1996). Data mining projects were initially carried out in many dif-
ferent ways with each data analyst finding their own way of approaching
the problem, often through trial-and-error. As the data mining techniques
and businesses evolved, there was a need for data analysts to better under-
stand and standardize the knowledge discovery process, which would—as a
side effect—demonstrate to prospective customers that data mining was suf-
ficiently mature to be adopted as a key element of their business. This led
to the development of the cross-industry standard process for data mining
(CRISP-DM; Chapman et al., 2000), which is intended to be independent
of the choice of data mining tools, industry segment, and the applica-
tion/problem to be solved.

The CRISP-DM methodology defines the crucial steps of the knowledge
discovery process. Although in most data mining projects, several iterations of
individual steps or step sequences need to be performed, these basic guidelines
are very useful both for the data analyst and the client. Below is a list of
CRISP-DM steps.

1. Business understanding: understanding and defining of business goals
and the actual goals of data mining.

2. Data understanding: familiarization with the data and the application
domain, by exploring and defining the relevant prior knowledge.

3. Data preparation through data cleaning and preprocessing: creating the
relevant data subset through data selection, as well as finding of useful
properties/attributes, generating new attributes, defining appropriate at-
tribute values and/or value discretization.
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4. Data mining: the most important step of this process, which is con-
cerned with choosing the most appropriate data mining tools—from the
available tools for summarization, classification, regression, association,
clustering—and searching for patterns or models of interest.

5. Ewvaluation and interpretation of results: aided by pattern/model visual-
ization, transformation, and removal of redundant patterns.

6. Deployment: the use of the discovered knowledge.

A terminological note needs to be made at this point. While data mining
is considered to be the core step of the knowledge discovery process, in this
book—as with most industrial applications—we use the term data mining
interchangeably with knowledge discovery.

In addition to the CRISP-DM standardized methodology for building data
mining applications, standards covering specific phases of the process are also
emerging. These standards include:

— the XML-based Predictive Modeling Markup Language (PMML) (Pechter,
2009) standard for storing and sharing data mining results,

— a standard extending the Microsoft analysis server with new data mining
functionality (OLE DB for data mining, using a customized SQL language),

— part of the ISO effort to define multimedia and application-specific SQL
types and their methods, including support for data mining functionality
(SQL/MM), and

— the emerging Java API for data mining (JDM).

The standardization efforts and numerous tools available (IBM Intelligent
Miner, SAS Enterprise Miner, SPSS Clementine, and many others), includ-
ing the publicly available academic data mining platforms WEKA (Witten &
Frank, 2005; Hall et al., 2009), RAPID-I (formerly YALE; Mierswa et al.
2006), the Konstanz Information Miner KNIME (Berthold et al., 2009),
ORANGE (Demsar et al., 2004), and the statistical data analysis package
R (Everitt & Hothorn, 2006; Torgo, 2010) demonstrate that data mining has
made progress towards becoming a mature and widely used technology for
analytical practices.

Most of the available tools are capable of mining data in tabular format,
describing a dataset in terms of a fixed collection of attributes (properties), as
is the case with transactional databases. More sophisticated tools are avail-
able for data mining from relational databases, data warehouses and stores
of text documents. Methods and tools for the mining of advanced database
systems and information repositories (object-oriented and object-relational
databases, spatial databases, time-series data and temporal data, multimedia
data, heterogeneous and legacy data, World-Wide Web) still lack commercial
deployment.



No. | Education Marital Status Sex Has Children | Approved
1 primary single male no no
2 primary single male yes no
3 primary married male no yes
4 | university divorced female no yes
5 | university married female yes yes
6 | secondary single male no no
7 | university single female no yes
8 | secondary divorced female no yes
9 | secondary single female yes yes

10 | secondary married male yes yes
11 primary married female no yes
12 | secondary divorced male yes no
13 | university divorced female yes no
14 | secondary divorced male no yes

Table 1.1: A sample database.

1.4 Terminology and categorization of learning tasks

In the simplest case, data mining techniques operate on a single data table.
Rows in the data table correspond to objects (training examples) to be an-
alyzed in terms of their properties (attributes) and the concept (class) to
which they belong. There are two main approaches:

Supervised learning. Supervised learning assumes that training examples
are classified (labeled by class labels)

Unsupervised learning. Unsupervised learning concerns the analysis of
unclassified examples.

In both cases, the goal is to induce a model for the entire dataset, or to
discover one or more patterns that hold for some part of the dataset.

In supervised learning, data is usually formed from examples (records of
given attribute values) which are labeled by the class to which they belong
(Kotsiantis et al., 2006). The task is to find a model (a classifier) that will
enable a newly encountered instance to be classified. Examples of discrete
classification tasks are classification of countries based on climate, classifica-
tion of cars based on gas consumption, or prediction of a diagnosis based on
patient’s medical condition.

Let us formulate a classification/prediction task, and illustrate it by a
simplified example. As described above, we are given a database of observa-
tions described with a fixed number of attributes A;, and a designated class
attribute C. The learning task is to find a mapping f that is able to com-
pute the class value C = f(Aq,...,A,,) from the attribute values of new,
previously unseen observations.
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Table 1.1 shows a very small, artificial sample database.! The database
contains the results of a survey on 14 individuals, concerning the approval
or disapproval of a certain issue. Each individual is characterized by four
attributes—Education (with possible values primary school, secondary school,
or university), MaritalStatus (with possible values single, married, or divorced),
Sex (male or female), and HasChildren (yes or no)—that encode rudimen-
tary information about their sociodemographic background. The last column,
Approved, is the class attribute, encoding whether the individual approved or
disapproved of the issue.

The task is to use the information in this ¢raining set to derive a model
that is able to predict whether a person is likely to approve or disapprove the
issue, based on the four demographic characteristics. While there are statis-
tical techniques that are able to solve particular instances of this problem,
mainly focusing on the analysis of numeric data, machine learning and data
mining techniques focus on the analysis of categorical, non-numeric data, and
on the interpretability of the result.

Typical data mining approaches find patterns or models in a single data
table, while some, like most of the relational data mining approaches, (Lavrac
& Dzeroski, 1994a; Dzeroski & Lavrag¢, 2001) find patterns/models from data
stored in multiple tables, e.g., in a given relational database.

Propositional learning. Data mining approaches that find patterns/models
in a given single table are referred to as attribute-value or propositional
learning approaches, as the patterns/models they find can be expressed
in propositional logic.

Relational learning. First-order learning approaches are also referred to
as relational data mining (RDM) (Dzeroski & Lavrac, 2001), relational
learning (RL) (Quinlan, 1990) or inductive logic programming (ILP)
(Muggleton, 1992; Lavra¢ & Dzeroski, 1994a), as the patterns/models
they find are expressed in relational formalisms of first-order logic.

We further distinguish between predictive and descriptive data mining.
In the example above, a predictive data mining approach will aim at building
a predictive classification model for classifying new instances into one of the
two class values (yes or no). On the other hand, in descriptive data mining
the input data table will typically not contain a designated class attribute
and will aim at finding patterns describing the relationships between other
attribute values.

Predictive data mining. Predictive data mining methods are supervised.
They are used to induce models or theories (such as decision trees or
rule sets) from class-labeled data. The induced models can be used for
prediction and classification.

! The dataset is adapted from the well-known dataset Quinlan (1986).



Fig. 1.1: A decision tree describing the dataset shown in Table 1.1.

Descriptive data mining. Descriptive data mining methods are typically
unsupervised. They are used to induce interesting patterns (such as as-
sociation rules) from unlabeled data. The induced patterns are useful in
exploratory data analysis.

While there is no clear distinction in the literature, we will generally use
the term pattern for results of a descriptive data mining process, whereas we
will use the terms model, theory, or hypothesis for results of a predictive data
mining task.

The next two sections briefly introduce the two main learning approaches,
predictive and descriptive induction.

1.5 Predictive data mining: Induction of models

This data analysis task is concerned with the induction of models for classifi-
cation and prediction purposes, and is referred to as predictive induction. Two
symbolic data mining methods that result in classification/prediction models
are outlined in this section: decision tree induction and rule set induction.

1.5.1 Decision tree induction

A decision tree is a classification model whose structure consists of a number
of nodes and arcs. In general, a node is labeled by an attribute name, and
an arc by a valid value of the attribute associated with the node from which
the arc originates. The top-most node is called the root of the tree, and the
bottom nodes are called the leaves. Each leaf is labeled by a class (value of
the class attribute). When used for classification, a decision tree is traversed
in a top-down manner, following the arcs with attribute values satisfying the
instance that is to be classified. The traversal of the tree leads to a leaf node
and the instance is assigned the class label of the leaf. Figure 1.1 shows a
decision tree induced from the training set shown in Table 1.1.

A decision tree is constructed in a top-down manner, starting with the
most general tree consisting of only the root node, and then refining it to a
more specific tree structure. A small tree consisting only of the root node is
too general, while the most specific tree which would construct a leaf node
for every single data instance would be too specific, as it would overfit the
data. The art of decision tree construction is to construct a tree at the right
‘generality level’ which will adequately generalize the training data to enable
high predictive accuracy on new instances.

The crucial step in decision tree induction is the choice of an attribute to
be selected as a node in a decision tree. Typical attribute selection criteria
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Fig. 1.2: A bad decision tree describing the dataset shown in Table 1.1.

use a function that measures the purity of a node, i.e., the degree to which
the node contains only examples of a single class. This purity measure is com-
puted for a node and all successor nodes that result from using an attribute
for splitting the data. In the well-known C4.5 decision tree algorithm, which
uses information-theoretic entropy as a purity measure (Quinlan, 1986), the
difference between the original purity value and the sum of the purity values
of the successor nodes weighted by the relative sizes of these nodes, is used
to estimate the utility of this attribute, and the attribute with the largest
utility is selected for expanding the tree.

To see the importance of this choice, consider a procedure that constructs
decision trees simply by picking the next available attribute instead of the
most informative attribute. The result is a much more complex and less
comprehensible tree (Figure 1.2). Most leaves cover only a single training
example, which means that this tree is overfitting the data. Consequently,
the labels that are attached to the leaves are not very reliable. Although
the trees in Figures 1.1 and 1.2 both classify the training data in Table 1.1
correctly, the former appears to be more trustworthy, and it has a higher
chance of correctly predicting the class values of new data.?

Note that some of the attributes may not occur at all in the tree; for
example, the tree in Figure 1.1 does not contain a test on Education. Appar-
ently, the data can be classified without making a reference to this variable.
In addition, the attributes in the upper parts of the tree (near the root) have
a stronger influence on the value of the target variable than the nodes in the
lower parts of the tree, in the sense that they participate in the classification
of a larger number of instances.

As aresult of the recursive partitioning of the data at each step of the top-
down tree construction process, the number of examples that end up in each
node decreases steadily. Consequently, the reliability of the chosen attributes
decreases with increasing depths of the tree. As a result, overly complex
models are generated, which explain the training data but do not generalize
well to unseen data. This is known as overfitting. This is the main reason why
the state-of-the-art decision tree learners employ a post-processing phase in
which the generated tree is simplified by pruning branches and nodes near
the leaves, which results in replacing some of the interior nodes of the tree
with a new leaf, thereby removing the subtree that was rooted at this node.
It is important to note that the leaf nodes of the new tree are no longer pure

2 The preference for simpler models is a heuristic criterion known as Occam’s razor,
which appears to work well in practice. It is often addressed in the literature on
model selection, but its utility has been the subject of discussion (Domingos,
1999; Webb, 1996).
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nodes, containing only training examples of the same class labeling the leaf;
instead the leaf will bear the label of the most frequent class at the leaf.

Many decision tree induction algorithms exist, the most popular being
C4.5 and its variants: a commercial product SEE5, and J48, which is available
in the WEKA workbench (Witten & Frank, 2005), as open source.

1.5.2 Rule set induction

Another important machine learning technique is the induction of rule sets.
The learning of rule-based models has been a main research goal in the field of
machine learning since its beginning in the early 1960s. Recently, rule-based
techniques have also received increased attention in the statistical community
(Friedman & Fisher, 1999).

A rule-based classification model consists of a set of if-then rules. Each
rule has a conjunction of attribute values (which will in the following be
called features) in the conditional part of the rule, and a class label in the
rule consequent. As an alternative to such logical rules, probabilistic rules can
be induced; in addition to the predicted class label, the consequent of these
rules consists also of a list of probabilities or numbers of covered training
instances for each possible class label (Clark & Boswell, 1991).

Rule sets are typically simpler and more comprehensible than decision
trees. To see why, note that a decision tree can also be interpreted as a set
of if-then rules. Each leaf in the tree corresponds to one rule, where the
conditions encode the path that is taken from the root to this particular leaf,
and the conclusion of the rule is the label of that leaf. Figure 1.3 shows the set
of rules that corresponds to the tree in Figure 1.1. Note the rigid structure of
these rules. For example, the first condition always uses the same attribute,
namely, the one used at the root of the tree. Next to each rule, we show the
proportion of covered examples for each class value.

The main difference between the rules generated by a decision tree and
the rules generated by a rule learning algorithm is that the former rule set
consists of nonoverlapping rules that span the entire instance space (i.e.,
each possible combination of attribute values will be covered by exactly one
rule). Relaxing this constraint—by allowing for potentially overlapping rules
that need not span the entire instance space—may often result in smaller
rule sets. However, in this case, we need mechanisms for tie breaking (which
rule to choose when more than one covers the example to be classified) and
default classifications (what classification to choose when no rule covers the
given example). Typically, one prefers rules with a higher ratio of correctly
classified examples from the training set.

Figure 1.4 shows a particularly simple rule set which uses two different
attributes in its first two rules. Note that these two rules are overlapping:
several examples will be covered by more than one rule. For instance, exam-
ples 3 and 10 are covered by both the first and the third rule. These conflicts
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IF MaritalStatus = single

AND Sex = female yes (2/9) no (0/5)
THEN Approved = yes \ R |
IF MaritalStatus = single

AND Sex = male yes (0/9) no (3/5)
THEN Approved = no ‘ Z| |
IF MaritalStatus = married ves (419) no (0/%)
THEN Approved = yes ‘ A |
IF MaritalStatus = divorced

AND HasChildren = yes yes (0/9) no (2/5)
THEN Approved = no \ Z |
IF MaritalStatus = divorced

AND HasChildren = no yes (3/9) no (0/5)
THEN Approved = yes ‘ N ‘

Fig. 1.3: A rule set describing the dataset shown in Table 1.1.

are typically resolved by using the more accurate rule, i.e., the rule that cov-
ers a higher proportion of examples that support its prediction (the first one
in our case). Also note that this rule set makes two mistakes (the last two
examples). These might be resolved by resorting to a more complex rule set
(like the one in Figure 1.3) but, as stated above, it is often more advisable to
sacrifice accuracy on the training set for model simplicity in order to avoid
overfitting the training data. Finally, note the default rule at the end of the
rule set. This is added for the case when certain regions of the data space are
not represented in the training set.

The key ideas for learning such rule sets are quite similar to the ideas
used in decision tree induction. However, instead of recursively partition-
ing the dataset by optimizing the purity measure over all successor nodes
(in the literature, this strategy is also known as divide-and-conquer learn-
ing), rule learning algorithms only expand a single successor node at a time,
thereby learning a complete rule that covers part of the training data. Af-
ter a complete rule has been learned, all examples that are covered by this
rule are removed from the training set, and the procedure is repeated with
the remaining examples (this strategy is also known as separate-and-conquer
learning). Again, pruning is a good idea for rule learning, which means that
the rules only need to cover examples that are mostly from the same class.
It turns out to be advantageous to prune rules immediately after they have
been learned, that is before successive rules are learned (Fiirnkranz, 1997).
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IF MaritalStatus = married ves (2/9) no (0/5)
THEN Approved = yes ‘ N |
IF Sex = female yes (6/9) no (1/5)
THEN Approved = yes ‘ N Z |
IF  Sex = male yes (3/9) no (4/5)
THEN Approved = no ‘ NN %z

DEFAULT Approved

yes

Fig. 1.4: A smaller rule set describing the dataset shown in Table 1.1.

1.5.3 Rule sets versus decision trees

There are several aspects which make rule learning attractive. First of all, de-
cision trees are often quite complex and hard to understand. Quinlan (1993)
has noted that even pruned decision trees may be too cumbersome, complex,
and inscrutable to provide insight into the domain at hand and has conse-
quently devised procedures for simplifying decision trees into pruned produc-
tion rule sets (Quinlan, 1987a, 1993). Additional evidence for this comes from
Rivest (1987), showing that decision lists (ordered rule sets) with at most k
conditions per rule are strictly more expressive than decision trees of depth
k. A similar result has been proved by Bostrom (1995).

Moreover, the restriction of decision tree learning algorithms to nonover-
lapping rules imposes strong constraints on learnable rules. One problem
resulting from this constraint is the replicated subtree problem (Pagallo &
Haussler, 1990); it often happens that identical subtrees have to be learned
at various places in a decision tree, because of the fragmentation of the exam-
ple space imposed by the restriction to nonoverlapping rules. Rule learners do
not make such a restriction and are thus less susceptible to this problem. An
extreme example for this problem has been provided by Cendrowska (1987),
who showed that the minimal decision tree for the concept x defined as

IF A = 3 AND B = 3 THEN Class
IF C = 3 AND D = 3 THEN Class

X

X

has 10 interior nodes and 21 leafs assuming that each attribute A ...D can
be instantiated with three different values.

Finally, propositional rule learning algorithms extend naturally to the
framework of inductive logic programming framework, where the goal is ba-
sically the induction of a rule set in first-order logic, e.g., in the form of a
Prolog program.? First-order background knowledge can also be used for deci-

3 Prolog is a programming language, enabling knowledge representation in first-
order logic (Lloyd, 1987; Sterling & Shapiro, 1994). We will briefly return to
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sion tree induction (Watanabe & Rendell, 1991; Lavrac et al., 1991; Kramer,
1996; Blockeel & De Raedt, 1998), but once more, Watanabe & Rendell
(1991) have noted that first-order decision trees are usually more complex
than first-order rules.

1.6 Descriptive data mining: Induction of patterns

While a decision tree and a set of rules represent a model (a theory) that can
be used for classification and/or prediction, the goal of data analysis may
be different. Instead of model construction, the goal may be the discovery
of individual patterns/rules describing regularities in the data. This form of
data analysis is referred to as descriptive induction and is frequently used in
exploratory data analysis.

As opposed to decision tree and rule set induction, which result in classifi-
cation models, association rule learning is an unsupervised learning method,
with no class labels assigned to the examples. Another method for unsu-
pervised learning is clustering, while subgroup discovery—aimed at finding
descriptions of interesting population subgroups—is a descriptive induction
method for pattern learning, but is at the same time a form of supervised
learning due to a defined property of interest acting as a class.

1.6.1 Association rule learning

The problem of inducing association rules (Agrawal et al., 1995) has received
much attention in the data mining community. It is defined as follows: given
a set of transactions (examples), where each transaction is a set of items,
an association rule is an expression of the form B — H, where B and H are
sets of items, and B — H is interpreted as IFF B THEN H, meaning that the
transactions in a database which contain B tend to contain H as well.

Figure 1.5 shows three examples for association rules that could be dis-
covered in the dataset of Table 1.1. The first rule states that in this dataset,
all people with a university education were female. This rule is based on
four observations in the dataset. The fraction of entries in the database that
satisfy all conditions (both in body and head) is known as the support of
the rule. Thus, the support of the rule is the ratio of the number of records
having true values for all items in B and H to the number of all records in the
database. As 4 of a total of 14 persons are both female and have university
education, the support of the first rule is 4/14 ~ 0.286.

The second rule also has a support of 4/14, because four people in the
database do not approve and are male. However, in this case, the strength of
the rule is not as strong as in the previous case, because only 4/5 = 0.8 of

learning in first-order logic in Section 1.7; a systematic treatment of relational
rule learning can be found in Chapter 5.
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IF Education = university support (4/14) | confidence (4/4)
THEN Sex = female

IF Approved = no support (4/14) | confidence (4/5)

THEN Sex = male ‘ N 7
IF Education = secondary

AND MaritalStatus = divorced support (2/14) | confidence (2/3)
THEN HasChildren = no ‘ Z|

AND Approved = yes

Fig. 1.5: Three rules induced by an association rule learning algorithm.

all persons that do not approve were actually male. This value is called the
confidence of the rule. It is calculated as the ratio of the number of records
having true values for all items in B and H to the number of records having
true values for all items in B.

Unlike with classification rules, the head of an association rule may also
contain a conjunction of conditions. This is illustrated by the third rule,
which states that divorced people with secondary education typically have
no children and approve.

In all rules there is no distinction between the class attribute and all other
attributes: the class attribute may appear on any side of the rule or not at
all. In fact, typically association rules are learned from databases with binary
features (called items) without any dedicated class attribute. Thus associa-
tion rule discovery is an unsupervised learning task. Most algorithms, such as
the well-known APRIORI algorithm (Agrawal et al., 1995), find all association
rules that satisfy minimum support and minimum confidence constraints.

An in-depth survey of association rule discovery is beyond the scope of this
book, and, indeed, the subject has already been covered in other monographs
(Adamo, 2000; Zhang & Zhang, 2002). We will occasionally touch upon the
topic when it seems appropriate (e.g., the level-wise search algorithm, which
forms the basis of APRIORI and related techniques, is briefly explained in
Section 6.3.2), but for a systematic treatment of the subject we refer the
reader to the literature.

1.6.2 Subgroup discovery

In subgroup discovery the task is to find sufficiently large population sub-
groups that have a significantly different class distribution than the entire
population (the entire dataset). Subgroup discovery results in individual
rules, where the rule conclusion is a class (the property of interest). The
main difference between learning of classification rules and subgroup discov-
ery is that the latter induces single rules (subgroups) of interest, which aim
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at revealing interesting properties of groups of instances, not necessarily at
forming a rule set used for classification.

IF MaritalStatus = single

AND Sex = male ves (0/9) no (3/5)
THEN Approved = no \ Z |
IF MaritalStatus = single ves (2/9) no (3/5)
THEN Approved = no \ R Z |
IF Sex = female yes (6/9) no (1/5)
THEN Approved = yes \ X Z |

Fig. 1.6: Three subgroup descriptions induced by a subgroup discovery algorithm.

Figure 1.6 shows three subgroup descriptions that have been induced with
the MAGNUM OPUS descriptive rule learning system (Webb, 1995).* While
the first and third rules could also be found by classification rule algorithms
(cf. Figure 1.4), the second rule would certainly not be found because it has
a comparably low predictive quality. There are almost as many single per-
sons that approve than there are singles that do not approve. Nevertheless,
this rule can be considered to be an interesting subgroup because the class
distribution of covered instances (2 yes and 3 no) is significantly different
than the distribution in the entire dataset (9 yes and 5 no). Conversely, a
classification rule algorithm would not find the first rule because if we accept
the second rule for classification, adding the first one does not improve clas-
sification performance, i.e., it is redundant with respect to the second rule.
Finally, note that these three rules do not cover all the examples. While it
is typically considered important that each rule covers a significant number
of examples, it is not necessary that each example be covered by some rule,
because the rules will not be used for prediction.

Subgroup discovery and related techniques are covered in depth in Chap-
ter 11 of this book.

1.7 Relational data mining

Both predictive and descriptive data mining are usually performed on a single
database relation, consisting of examples represented with values for a fixed
number of attributes. However, in practice, the data miner often has to face
more complex scenarios. Suppose that data is stored in several tables, e.g.,

* The rules are taken from (Kralj Novak et al., 2009).
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it has a relational database form. In this case the data has to be transformed
into a single table in order to be able to use standard data mining techniques.
The most common data transformation approach is to select one table as the
main table to be used for learning, and try to incorporate the contents of
other tables by aggregating the information contained in the tables into sum-
mary attributes, which are added to the main table. The problem with such
transformations is that some information may be lost while the aggregation
may also introduce artifacts, possibly leading to inappropriate data mining
results. What one would like to do is to leave data conceptually unchanged
and rather use data mining tools that can deal with multirelational data.

Integrating data from multiple tables through joins or aggregation can
cause loss of meaning or information. Suppose we are given two relations:
customer (CID,Name,Age,SpendALot) encodes the ID, name, and age of a
customer, and the information whether this customer spends a lot, and
purchase (CID,ProdID,Date,Value,PaymentMode) encodes a single purchase
by a customer with a given ID. Each customer can make multiple pur-
chases, and we are interested in characterizing customers that spend a lot.
Integrating the two relations via a natural join will result in a relation
purchasel (CID,Name, Age, SpendALot ,ProdID,Date,Value,PaymentMode).
However, this is problematic because now each row corresponds to a pur-
chase and not to a customer, and we intend to analyze our information with
respect to customers. An alternative would be to aggregate the information
contained in the purchase relation. One possible aggregation could be the re-
lation customerl(CID,Name,Age,NofPurchases,TotalValue,SpendALot),
which aggregates the number of purchases and their total value into new
attributes. Naturally, some information has been lost during the aggregation
process.

The following pattern can be discovered by a relational rule learning sys-
tem if the relations customer and purchase are considered together.

customer (CID,Name,Age,yes) :-
Age > 30,
purchase (CID,PID,D,Value,PM),
PM = creditcard,
Value > 100.

This pattern, written in a Prolog-like syntax, says: ‘a customer spends a lot
if she is older than 30, has purchased a product of value more than 100 and
paid for it by credit card.” It would not be possible to induce such a pattern
from either of the relations purchasel and customerl considered on their
own.

We will return to relational learning in Chapter 5, where we take a feature-
based view on the problem.
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1.8 Conclusion

This chapter briefly described several aspects of machine learning and data
mining, aiming to provide the background and basic understanding of the
topics presented in this book. To conclude, let us make some speculations
about future developments in data mining.

With regard to data mining research, every year the research community
addresses new open problems and new problem areas, for many of which
data mining is able to provide value-added answers and results. Because
of the interdisciplinary nature of data mining, there is a big inflow of new
knowledge, widening the spectrum of problems that can be solved by the
use of this technology. Another reason why data mining has a scientific and
commercial future was given by Friedman (1998): “Every time the amount
of data increases by a factor of ten, we should totally rethink how we analyze
it.”

To achieve its full commercial exploitation, data mining is still lacking the
standardization to the degree of, for example, the standardization available
for database systems. There are initiatives in this direction, which will dimin-
ish the monopoly of expensive closed-architecture systems. For data mining
to be truly successful it is important that data mining tools become available
in major database products as well as in standard desktop applications (e.g.,
spreadsheets). Other important recent developments are open source data
mining services, tools for online construction of data mining workflows, as
well as the terminology and ingredients of data mining through the develop-
ment of a data mining ontology (Lavra¢ et al., 2008, 2009).

In the future, we envisage intensive development and increased usage of
data mining in specific domain areas, such as bioinformatics, multimedia, text
and web data analysis. On the other hand, as data mining can be used for
building surveillance systems, recent research also concentrates on developing
algorithms for mining databases without compromising sensitive information
(Agrawal & Srikant, 2000). A shift towards automated use of data mining
in practical systems is also expected to become very common.
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